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Vector Analysis 
 
 
A.1 Vectors 
 
A.1.1 Introduction 
 
Certain physical quantities such as mass or the absolute temperature at some point only 
have magnitude. These quantities can be represented by numbers alone, with the 
appropriate units, and they are called scalars. There are, however, other physical 
quantities which have both magnitude and direction; the magnitude can stretch or shrink, 
and the direction can reverse. These quantities can be added in such a way that takes into 
account both direction and magnitude. Force is an example of a quantity that acts in a 
certain direction with some magnitude that we measure in newtons. When two forces act 
on an object, the sum of the forces depends on both the direction and magnitude of the 
two forces. Position, displacement, velocity, acceleration, force, momentum and torque 
are all physical quantities that can be represented mathematically by vectors. We shall 
begin by defining precisely what we mean by a vector.  
 
 
A.1.2 Properties of a Vector 
 
A vector is a quantity that has both direction and magnitude. Let a vector be denoted by 
the symbol . The magnitude of A A  is | A≡A | .  We can represent vectors as geometric 
objects using arrows. The length of the arrow corresponds to the magnitude of the vector. 
The arrow points in the direction of the vector (Figure A.1.1). 
 

 
 

Figure A.1.1 Vectors as arrows. 
 
There are two defining operations for vectors:   
 
 (1) Vector Addition: Vectors can be added. 
 
Let  and  be two vectors. We define a new vector, A B = +C A B , the “vector addition” 
of  and , by a geometric construction. Draw the arrow that represents . Place the A B A
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tail of the arrow that represents B  at the tip of the arrow for A  as shown in Figure 
A.1.2(a). The arrow that starts at the tail of A  and goes to the tip of  is defined to be 
the “vector addition” . There is an equivalent construction for the law of vector 
addition. The vectors  and  can be drawn with their tails at the same point. The two 
vectors form the sides of a parallelogram. The diagonal of the parallelogram corresponds 
to the vector , as shown in Figure A.1.2(b). 

B
= +C A B

A B

= +C A B
 

  
Figure A.1.2 Geometric sum of vectors. 

 
Vector addition satisfies the following four properties: 
 
(i) Commutivity: The order of adding vectors does not matter. 
 
 + = +A B B A  (A.1.1) 
 
Our geometric definition for vector addition satisfies the commutivity property (i) since 
in the parallelogram representation for the addition of vectors, it doesn’t matter which 
side you start with as seen in Figure A.1.3. 
 

 
 

Figure A.1.3 Commutative property of vector addition 
 
(ii) Associativity:  When adding three vectors, it doesn’t matter which two you start with 
 
 ( ) ( )+ + = + +A B C A B C  (A.1.2) 
 
In Figure A.1.4(a), we add ( )+ +A B C , while in Figure A.1.4(b) we add . 
We arrive at the same vector sum in either case. 

( )+ +A B C
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Figure A.1.4 Associative law. 
 
(iii) Identity Element for Vector Addition: There is a unique vector, 0 , that acts as an 
identity element for vector addition.  
 
This means that for all vectors , A
 
 + = + =A 0 0 A A  (A.1.3) 
 
(iv) Inverse element for Vector Addition: For every vector A , there is a unique inverse 
vector  
 
 ( )1− ≡ −A A  (A.1.4) 
 
such that 

( )+ − =A A 0  

 
This means that the vector −  has the same magnitude asA A , | | | | A= − =A A , but they 
point in opposite directions (Figure A.1.5). 
 

 
 

Figure A.1.5 additive inverse. 
 
 
(2) Scalar Multiplication of Vectors: Vectors can be multiplied by real numbers. 
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Let  be a vector. Let c  be a real positive number. Then the multiplication of  by c  is 
a new vector which we denote by the symbol 

A A
cA .  The magnitude of  is c  times the 

magnitude of  (Figure A.1.6a), 
cA

A
 
 cA Ac=  (A.1.5) 
 
Since , the direction of  is the same as the direction ofc > 0 cA A . However, the direction 
of  is opposite of  (Figure A.1.6b). c− A A
 

 
 

Figure A.1.6 Multiplication of vector A  by (a) , and (b) . 0c > 0c− <
 
Scalar multiplication of vectors satisfies the following properties: 
 
(i) Associative Law for Scalar Multiplication: The order of multiplying numbers is 
doesn’t matter.  
 
Let b and c be real numbers. Then 
 
 ( ) ( ) ( ) ( )b c bc cb c b= = =A A A A

c

 (A.1.6) 
 
(ii) Distributive Law for Vector Addition: Vector addition satisfies a distributive law 
for multiplication by a number.  
 
Let c be a real number. Then 
 
 ( )c c+ = +A B A B  (A.1.7) 
 
Figure A.1.7 illustrates this property. 
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Figure A.1.7 Distributive Law for vector addition. 
 
(iii) Distributive Law for Scalar Addition: The multiplication operation also satisfies a 
distributive law for the addition of numbers.  
 
Let b and c be real numbers. Then  
 
 ( )b c b c+ = +A A A  (A.1.8) 
 
Our geometric definition of vector addition satisfies this condition as seen in Figure 
A.1.8. 
 

 
 

Figure A.1.8 Distributive law for scalar multiplication 
 
(iv) Identity Element for Scalar Multiplication: The number 1 acts as an identity 
element for multiplication, 
 
 1 =A A  (A.1.9) 
 
A.1.3 Application of Vectors 
 
When we apply vectors to physical quantities it’s nice to keep in the back of our minds 
all these formal properties. However from the physicist’s point of view, we are interested 
in representing physical quantities such as displacement, velocity, acceleration, force, 
impulse, momentum, torque, and angular momentum as vectors. We can’t add force to 
velocity or subtract momentum from torque. We must always understand the physical 
context for the vector quantity. Thus, instead of approaching vectors as formal 
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mathematical objects we shall instead consider the following essential properties that 
enable us to represent physical quantities as vectors. 
 
(1) Vectors can exist at any point P in space.  
 
(2) Vectors have direction and magnitude. 
 
(3) Vector Equality:  Any two vectors that have the same direction and magnitude are 
equal no matter where in space they are located. 
 
(4) Vector Decomposition: Choose a coordinate system with an origin and axes. We can 
decompose a vector into component vectors along each coordinate axis. In Figure A.1.9 
we choose Cartesian coordinates for the -x y  plane (we ignore the -direction for 
simplicity but we can extend our results when we need to). A vector  at P can be 
decomposed into the vector sum, 

z
A

 
 x= +A A A y  (A.1.10) 
 
where  is the -component vector pointing in the positive or negative -direction, 

and  is the -component vector pointing in the positive or negative -direction 
(Figure A.1.9).  

xA x x

yA y y

 

 
 

Figure A.1.9 Vector decomposition 
 
(5) Unit vectors: The idea of multiplication by real numbers allows us to define a set of 
unit vectors at each point in space. We associate to each point  in space, a set of three 
unit vectors (

P
)ˆ ˆ ˆ, ,i j k . A unit vector means that the magnitude is one: , 1ˆ| |=i 1ˆ| |=j , and 

. We assign the direction of ˆ  to point in the direction of the increasing -
coordinate at the point . We call ˆ  the unit vector at  pointing in the + -direction. 
Unit vectors ˆ

1ˆ| |=k i x
P i P x

j  and  can be defined in a similar manner (Figure A.1.10). k̂
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Figure A.1.10 Choice of unit vectors in Cartesian coordinates. 
 
(6) Vector Components:  Once we have defined unit vectors, we can then define the -
component and -component of a vector. Recall our vector decomposition, 

. We can write the x-component vector, 

x
y

x= +A A A y xA , as 
 
 x x̂A=A i  (A.1.11) 
 
In this expression the term Ax , (without the arrow above) is called the x-component of 
the vector . The -component  can be positive, zero, or negative. It is not the 
magnitude of  which is given by .  Note the difference between the -

component, , and the -component vector, 

A x Ax

xA 2 1/ 2( )xA x

Ax x xA . 
 
In a similar fashion we define the y -component, Ay , and the -component, , of the 

vector  

z Az

A
 
 y y z z

ˆ ˆA , A= =A j A k  (A.1.12) 
 
A vector  can be represented by its three components A ( )x y zA , A , A=A . We can also 
write the vector as  
 x y z

ˆ ˆ ˆA A A= + +A i j k  (A.1.13) 
 
(7) Magnitude: In Figure A.1.10, we also show the vector components . 

Using the Pythagorean theorem, the magnitude of the 

( )x y zA , A , A=A

A  is, 
 
 2 2

x yA A A A= + + 2
z  (A.1.14) 

 
(8) Direction: Let’s consider a vector ( 0)x yA , A ,=A . Since the -component is zero, the 

vector  lies in the 

z

A -x y  plane. Let θ  denote the angle that the vector  makes in the A
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counterclockwise direction with the positive -axis (Figure A.1.12). Then the -
component and -components are 

x x
y

 
 cos sinx yA A , A Aθ θ= =  (A.1.15) 

 

 
 

Figure A.1.12 Components of a vector in the x-y plane. 
 
We can now write a vector in the -x y  plane as 
 
 ˆcos sinA A ˆθ θ= +A i j  (A.1.16) 
 
Once the components of a vector are known, the tangent of the angle θ  can be 
determined by 
 

 sin tan
cos

y

x

A A
A A

θ θ
θ

= =  (A.1.17) 

 
which yields 
 

 1tan y

x

A
A

θ − ⎛ ⎞
= ⎜

⎝ ⎠
⎟  (A.1.18) 

 
 
Clearly, the direction of the vector depends on the sign of  and xA yA . For example, if 
both  and , then 0xA > 0yA > 0 / 2θ π< < , and the vector lies in the first quadrant. If, 
however,  and , then 0xA > 0yA < / 2 0π θ− < < , and the vector lies in the fourth 
quadrant. 
 
(9) Vector Addition: Let  and BA  be two vectors in the x-y plane. Let θA  andθB  denote 
the angles that the vectors  and BA  make (in the counterclockwise direction) with the 
positive x-axis. Then  
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 cos sinA A
ˆA A ˆθ θ= +A i j  (A.1.19) 

 
 cos sinB

ˆB B B
ˆθ θ= +B i j  (A.1.20) 

 
In Figure A.1.13, the vector addition = +C A B  is shown. LetθC  denote the angle that 
the vector  makes with the positive x-axis.  C
 

 
 

Figure A.1.13 Vector addition with components 
 
Then the components of C  are  
 
 x x x y yC A B , C A By= + = +

B

B

 (A.1.21) 
 
In terms of magnitudes and angles, we have  
 

 
cos cos cos
sin sin sin

x C A

y C A

C C A B
C C A B

θ θ θ
θ θ

= = +
= = + θ

)̂

 (A.1.22) 

 
We can write the vector  as  C
 

 ( ) ( ) (cos sinx x y y C C
ˆ ˆ ˆA B A B C θ θ= + + + = +C i j i j  (A.1.23) 

 
 
A.2 Dot Product 
 
A.2.1 Introduction 
 
We shall now introduce a new vector operation, called the “dot product” or “scalar 
product” that takes any two vectors and generates a scalar quantity (a number). We shall 
see that the physical concept of work can be mathematically described by the dot product 
between the force and the displacement vectors. 
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Let  and B  be two vectors. Since any two non-collinear vectors form a plane, we 
define the angle 

A
θ  to be the angle between the vectors A  and B  as shown in Figure 

A.2.1. Note that θ  can vary from 0 toπ . 
 

 
Figure A.2.1 Dot product geometry. 

 
A.2.2 Definition 
 
The dot product of the vectors ⋅A B  A  and B  is defined to be product of the magnitude 
of the vectors  and  with the cosine of the angle A B θ  between the two vectors: 
 
 cosAB θ⋅ =A B  (A.2.1) 
 
Where |  and  represent the magnitude of |A = A ||B = B A  and B  respectively.  The dot 
product can be positive, zero, or negative, depending on the value of cosθ . The dot 
product is always a scalar quantity. 
 
We can give a geometric interpretation to the dot product by writing the definition as  
 
 ( cos )A Bθ⋅ =A B  (A.2.2) 
 
In this formulation, the term cosA θ  is the projection of the vector A  in the direction of 
the vector . This projection is shown in Figure A.2.2a. So the dot product is the product 
of the projection of the length of 

B
A  in the direction of B  with the length of B . Note that 

we could also write the dot product as  
 
 ( cos )A B θ⋅ =A B  (A.2.3) 
 
 
Now the term cosB θ  is the projection of the vector B  in the direction of the vector A  as 
shown in Figure A.2.2b.From this perspective, the dot product is the product of the 
projection of the length of  in the direction of B A  with the length of A . 
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Figure A.2.2a and A.2.2b Projection of vectors and the dot product. 
 
From our definition of the dot product we see that the dot product of two vectors that are 
perpendicular to each other is zero since the angle between the vectors is / 2π  and 
cos( / 2) 0π = .  
 
A.2.3 Properties of Dot Product 
  
The first property involves the dot product between a vector cA  where c is a scalar and a 
vector B , 
 
(1a) (c c )⋅ = ⋅A B A B  (A.2.4) 
 
The second involves the dot product between the sum of two vectors  and B  with a 
vectorC , 

A

 
(2a) ( )+ ⋅ = ⋅ + ⋅A B C A C B C  (A.2.5) 
 
 
Since the dot product is a commutative operation  
 
 ⋅ = ⋅A B B A  (A.2.6) 
 
the similar definitions hold 
 
(1b) (c c )⋅ = ⋅A B A B  (A.2.7) 
 
(2b) ( )⋅ + = ⋅ + ⋅C A B C A C B  (A.2.8) 
 
 
A.2.4 Vector Decomposition and the Dot Product 
 
With these properties in mind we can now develop an algebraic expression for the dot 
product in terms of components. Let’s choose a Cartesian coordinate system with the 
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vector B  pointing along the positive -axis with positive -component , i.e., x x Bx
ˆ

xB=B i .  

The vector  can be written as  A
 
 ˆ ˆ ˆ

x y zA A A= + +A i j k  (A.2.9) 
 

We first calculate that the dot product of the unit vector ˆ  with itself is unity: i
  
 ˆ ˆ ˆ ˆ| || | cos(0) 1⋅ =i i i i =  (A.2.10) 
 
since the unit vector has magnitude 1ˆ| |=i   and cos(0) 1= . We note that the same rule 
applies for the unit vectors in the y and z directions: 
 
 ˆ ˆ ˆ ˆ 1⋅ = ⋅ =j j k k  (A.2.11) 

 
The dot product of the unit vector ˆ  with the unit vectorˆi j  is zero because the two unit 
vectors are perpendicular to each other: 
 

cos( /2) 0ˆ ˆ ˆ ˆ| || | π⋅ =i j i j =  (A.2.12) 
  
Similarly, the dot product of the unit vector ˆ  with the unit vector , and the unit vector i k̂
ĵ  with the unit vector  are also zero: k̂
 
 0ˆ ˆˆ ˆ⋅ = ⋅ =i k j k  (A.2.13) 
 
The dot product of the two vectors now becomes 
 

  (A.2.14) 

ˆ ˆ ˆˆ( )
ˆ ˆ ˆ ˆ ˆˆ      property (2a)

ˆ ˆ ˆ ˆ ˆˆ( ) ( ) ( )    property (1a) and (1b)

x y z x

x x y x z x

x x y x z x

x x

A A A B

A B A B A B

A B A B A B

A B

⋅ = + + ⋅

= ⋅ + ⋅ + ⋅

= ⋅ + ⋅ + ⋅

=

A B i j k i

i i j i k i

i i j i k i

 
This third step is the crucial one because it shows that it is only the unit vectors that 
undergo the dot product operation.  
 
Since we assumed that the vector B  points along the positive -axis with positive -
component , our answer can be zero, positive, or negative depending on the -
component of the vector A .  In Figure A.2.3, we show the three different cases. 

x x
Bx x
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Figure A.2.3 Dot product that is (a) positive, (b) zero or (c) negative. 
 
The result for the dot product can be generalized easily for arbitrary vectors 
 
 x y z

ˆ ˆ ˆA A A= + +A i j k  (A.2.15) 
 
and  
 
 x y z

ˆ ˆ ˆB B B= + +B i j k  (A.2.16) 
to yield 
 
 x x y y z zA B A B A B⋅ = + +A B  (A.2.17) 
 
A.3 Cross Product 
 
We shall now introduce our second vector operation, called the “cross product” that takes 
any two vectors and generates a new vector. The cross product is a type of 
“multiplication” law that turns our vector space (law for addition of vectors) into a vector 
algebra (laws for addition and multiplication of vectors). The first application of the cross 
product will be the physical concept of torque about a point  which can be described 
mathematically by the cross product of a vector from

P
P  to where the force acts, and the 

force vector. 
 
A.3.1 Definition: Cross Product 
  
Let  and B  be two vectors. Since any two vectors form a plane, we define the angle A θ  
to be the angle between the vectors A  and B  as shown in Figure A.3.2.1. The magnitude 
of the cross product  of the vectors ×A B A  and B  is defined to be product of the 
magnitude of the vectors  and BA  with the sine of the angle θ  between the two vectors,  
 
 sinAB θ× =A B  (A.3.1) 
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where A and B denote the magnitudes of A and B , respectively. The angleθ  between the 
vectors is limited to the values 0 ≤θ ≤ π  insuring that sinθ ≥ 0. 
 

 
 

Figure A.3.1 Cross product geometry. 
 

The direction of the cross product is defined as follows. The vectors  and  form a 
plane. Consider the direction perpendicular to this plane. There are two possibilities, as 
shown in Figure A.3.1. We shall choose one of these two for the direction of the cross 
product  using a convention that is commonly called the “right-hand rule”. 

A B

×A B
 
A.3.2 Right-hand Rule for the Direction of Cross Product 

 
The first step is to redraw the vectors A  and B  so that their tails are touching. Then 
draw an arc starting from the vector A  and finishing on the vector . Curl your right 
fingers the same way as the arc. Your right thumb points in the direction of the cross 
product  (Figure A.3.2).  

B

×A B
 

 
 

Figure A.3.2 Right-Hand Rule. 
 
You should remember that the direction of the cross product ×A B  is perpendicular to 
the plane formed by  and .  A B
 
We can give a geometric interpretation to the magnitude of the cross product by writing 
the definition as  
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 ( sinA B )θ× =A B  (A.3.2) 

 
The vectors  and  form a parallelogram. The area of the parallelogram equals the 
height times the base, which is the magnitude of the cross product. In Figure A.3.3, two 
different representations of the height and base of a parallelogram are illustrated. As 
depicted in Figure A.3.3(a), the term

A B

sinB θ  is the projection of the vector  in the 
direction perpendicular to the vector 

B
A . We could also write the magnitude of the cross 

product as  
 
 ( sin )A Bθ× =A B  (A.3.3) 

 
Now the term sinA θ  is the projection of the vector A  in the direction perpendicular to 
the vector  as shown in Figure A.3.3(b).  B
 

 
 

Figure A.3.3 Projection of vectors and the cross product 
 
The cross product of two vectors that are parallel (or anti-parallel) to each other is zero 
since the angle between the vectors is 0  (or π ) and sin(0) 0=  (or sin( ) 0π = ). 
Geometrically, two parallel vectors do not have any component perpendicular to their 
common direction. 
 
A.3.3 Properties of the Cross Product 
  
(1) The cross product is anti-commutative since changing the order of the vectors cross 

product changes the direction of the cross product vector by the right hand rule: 
 
 × = − ×A B B A  (A.3.4) 
 

(2) The cross product between a vector cA  where c is a scalar and a vector  is B
 
 (c c )× = ×A B A B  (A.3.5) 
 
Similarly, 
 (c c )× = ×A B A B  (A.3.6) 
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(3) The cross product between the sum of two vectors A  and B  with a vector  is C
 
 ( )+ × = × + ×A B C A C B C  (A.3.7) 
 
Similarly, 
 
 ( )× + = × + ×A B C A B A C  (A.3.8) 
 
 
A.3.4 Vector Decomposition and the Cross Product 
 
We first calculate that the magnitude of cross product of the unit vector ˆ  with ˆi j : 
  

 ˆ ˆ ˆ ˆ| | | || | sin
2
π⎛ ⎞ 1× = ⎜ ⎟
⎝ ⎠

i j i j =  (A.3.9) 

 
since the unit vector has magnitude ˆ ˆ| | | | 1= =i j  and sin( / 2) 1π = . By the right hand rule, 
the direction of ˆ  is in the  as shown in Figure A.3.4.  Thus ˆ ˆˆ×i j ˆ+k ˆ× =i j k . 
 

 
Figure A.3.4 Cross product of ˆ ˆ×i j  

 
We note that the same rule applies for the unit vectors in the y and z directions, 
 
 ˆ ˆ ˆˆ ˆ, ˆ× = × =j k i k i j   (A.3.10) 
 
Note that by the anti-commutatively property (1) of the cross product, 
 
 ˆ ˆ ˆ ˆˆ ˆ,× = − × = −j i k i k j  (A.3.11) 
 
The cross product of the unit vector ˆ  with itself is zero because the two unit vectors are 
parallel to each other, ( sin( ), 

i
0) 0=
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 ˆ ˆ ˆ ˆ| | | || | sin(0) 0× =i i i i =  (A.3.12) 
 
The cross product of the unit vector ĵ  with itself and the unit vector  with itself, are 
also zero for the same reason. 

k̂

 
 0ˆ ˆ ˆ ˆ, 0× = × =j j k k  (A.3.13) 

 
With these properties in mind we can now develop an algebraic expression for the cross 
product in terms of components. Let’s choose a Cartesian coordinate system with the 
vector  pointing along the positive x-axis with positive x-component . Then the 
vectors  and  can be written as  

B Bx

A B
 
 x y z

ˆ ˆ ˆA A A= + +A i j k  (A.3.14) 
and 
 x̂B=B i  (A.3.15) 

 
respectively. The cross product in vector components is 
 
 ( )x y z

ˆ ˆ ˆA A A B× = + + ×A B i x̂j k i  (A.3.16) 
 

This becomes, using properties (3) and (2),   
 

 

ˆ ˆ ˆ ˆ ˆˆ( ) ( ) (
ˆ ˆ ˆ ˆ ˆˆ( ) ( ) (

ˆˆ

x x y x z x

x x y x z x

y x z x

A B A B A B

A B A B A B

A B A B

× = × + × + ×

= × + × + ×

= − +

A B i i )

)

j i k

i i

i

j i k

k j

i  (A.3.17) 

 
The vector component expression for the cross product easily generalizes for arbitrary 
vectors 
 
 x y z

ˆ ˆ ˆA A A= + +A i j k  (A.3.18) 
 
and 

 x y z
ˆ ˆ ˆB B B= + +B i j k  (A.3.19) 

 
to yield 
 
 ˆ ˆ ˆ( ) ( ) (y z z y z x x z x y y xA B A B A B A B A B A B× = − + − + −A B i )j k . (A.3.20) 
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The vector product

mc-TY-vectorprod-2009-1

One of the ways in which two vectors can be combined is known as the vector product. When
we calculate the vector product of two vectors the result, as the name suggests, is a vector.

In this unit you will learn how to calculate the vector product and meet some geometrical appli-
cations.

In order to master the techniques explained here it is vital that you undertake plenty of practice
exercises so that they become second nature.

After reading this text, and/or viewing the video tutorial on this topic, you should be able to:

• define the vector product of two vectors

• calculate the vector product when the two vectors are given in cartesian form

• use the vector product in some geometrical applications

Contents

1. Introduction 2

2. Definition of the vector product 2

3. Some properties of the vector product 4

4. The vector product of two vectors given in cartesian form 5

5. Some applications of the vector product 9
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1. Introduction

One of the ways in which two vectors can be combined is known as the vector product. When
we calculate the vector product of two vectors the result, as the name suggests, is a vector.

In this unit you will learn how to calculate the vector product and meet some geometrical appli-
cations.

2. Definition of the vector product

Study the two vectors a and b drawn in Figure 1. Note that we have drawn the two vectors so
that their tails are at the same point. The angle between the two vectors has been labelled θ.

a

b

θ

Figure 1. Two vectors a and b drawn so that the angle between them is θ.

As we stated before, when we find a vector product the result is a vector. We define the
modulus, or magnitude, of this vector as

|a| |b| sin θ

so at this stage, a very similar definition to the scalar product, except now the sine of θ appears
in the formula. However, this quantity is not a vector. To obtain a vector we need to specify a
direction. By definition the direction of the vector product is such that it is at right angles to
both a and b. This means it is at right angles to the plane in which a and b lie. Figure 2 shows
that we have two choices for such a direction.

a

b

Figure 2. There are two directions which are perpendicular to both a and b.

The convention is that we choose the direction specified by the right hand screw rule. This
means that we imagine a screwdriver in the right hand. The direction of the vector product is
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the direction in which a screw would advance as the screwdriver handle is turned in the sense
from a to b. This is shown in Figure 3.

a

b

n̂

a b×

Figure 3. The direction of the vector product is determined by the right hand screw rule.

We let a unit vector in this direction be labelled n̂. We then define the vector product of a and
b as follows:

Key Point

The vector product of a and b is defined to be

a× b = |a| |b| sin θ n̂

where

|a| is the modulus, or magnitude of a,
|b| is the modulus of b,
θ is the angle between a and b, and n̂ is a unit vector, perpendicular to both a and b

in a sense defined by the right hand screw rule.

Some people find it helpful to obtain the direction of the vector product using the right hand
thumb rule. This is achieved by curling the fingers of the right hand in the direction in which a

would be rotated to meet b. The thumb then points in the direction of a × b.

Yet another view is to align the first finger of the right hand with a, and the middle finger with
b. If these two fingers and the thumb are then positiioned at right-angles, the thumb points in
the direction of a× b. Try this for yourself.

Note that the symbol for the vector product is the times sign, or cross ×, and so we sometimes
refer to the vector product as the cross product. Either name will do. Some textbooks and some
teachers and lecturers use the alternative ‘wedge’ symbol ∧.
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3. Some properties of the vector product

Suppose, for the two vectors a and b we calculate the product in a different order. That is,
suppose we want to find b×a. Using the definition of b×a and using the right-hand screw rule
to obtain the required direction we find

b × a = |b| |a| sin θ (−n̂)

We see that the direction of b× a is opposite to that of a × b as shown in Figure 4. So

b × a = −a × b

So the vector product is not commutative. In practice, this means that the order in which we
do the calculation does matter. b× a is in the opposite direction to a × b.

a

b

ˆ

a

b

ˆ

n

-n

a b×

ab×

Figure 4. The direction of b× a is opposite to that of a × b.

Key Point

The vector product is not commutative.

b× a = −a × b

Another property of the vector product is that it is distributive over addition. This means that

a× (b + c) = a × b + a × c

Although we shall not prove this result here we shall use it later on when we develop an alternative
formula for finding the vector product.
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Key Point

The vector product is distributive over addition. This means

a× (b + c) = a × b + a × c

Equivalently,
(b + c) × a = b × a + c × a

The vector product of two parallel vectors

Example

Suppose the two vectors a and b are parallel. Strictly speaking the definition of the vector
product does not apply, because two parallel vectors do not define a plane, and so it does not
make sense to talk about a unit vector n̂ perpendicular to the plane. But if we nevertheless write
down the formula, we can see what the answer ‘ought’ to be:

a × b = |a| |b| sin θ n̂

= |a| |b| sin 0◦ n̂

= 0

because sin 0◦ = 0. So, when two vectors are parallel we define their vector product to be the
zero vector, 0.

Key Point

For two parallel vectors
a × b = 0

4. The vector product of two vectors given in cartesian form
We now consider how to find the vector product of two vectors when these vectors are given in
cartesian form, for example as

a = 3i − 2j + 7k and b = −5i + 4j− 3k

where i, j and k are unit vectors in the directions of the x, y and z axes respectively.

First of all we need to develop a few results in the following examples.
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Example

Suppose we want to find i × j. The vectors i and j are shown in Figure 5. Note that because
these vectors lie along the x and y axes they must be perpendicular.

i

j

k

x

y

z

O

Figure 5. The unit vectors i, j and k. Note that k is a unit vector perpendicular to i and j.

The angle between i and j is 90◦, and sin 90◦ = 1. Further, if we apply the right hand screw rule,
a vector perpendicular to both i and j is k. Therefore

i × j = |i| |j| sin 90◦ k

= (1)(1)(1)k

= k

Example

Suppose we want to find j × i. Again, refer to Figure 5. If we apply the right hand screw rule,
a vector perpendicular to both j and i, in the sense defined by the right hand screw rule, is −k.
Therefore

j × i = −k

Example

Suppose we want to find i × i. Because these two vectors are parallel the angle between them
is 0◦. We can use the Key Point developed on page 5 to show that i × i = 0.
In a similar manner we can derive all the results given in the following Key Point:

Key Point

i × i = 0 j× j = 0 k× k = 0

i × j = k j× k = i k× i = j

j × i = −k k × j = −i i× k = −j
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We can use these results to develop a formula for finding the vector product of two vectors given
in cartesian form:

Suppose a = a1i + a2j + a3k and b = b1i + b2j + b3k then

a × b = (a1i + a2j + a3k) × (b1i + b2j + b3k)

= a1i × (b1i + b2j + b3k)

+ a2j × (b1i + b2j + b3k)

+ a3k × (b1i + b2j + b3k)

= a1i × b1i + a1i × b2j + a1i × b3k

+ a2j × b1i + a2j× b2j + a2j× b3k

+ a3k × b1i + a3k × b2j + a3k × b3k

= a1b1i × i + a1b2i × j + a1b3i × k

+ a2b1j × i + a2b2j× j + a2b3j× k

+ a3b1k × i + a3b2k × j + a3b3k × k

Now, from the previous Key Point three of these terms are zero. Those that are not zero simplify
to give

a× b = (a2b3 − a3b2)i + (a3b1 − a1b3)j + (a1b2 − a2b1)k

This is the formula which we can use to calculate a vector product when we are given the cartesian
components of the two vectors.

Key Point

If a = a1i + a2j + a3k and b = b1i + b2j + b3k then

a × b = (a2b3 − a3b2)i + (a3b1 − a1b3)j + (a1b2 − a2b1)k

Example

Suppose we wish to find the vector product of the two vectors a = 4i+3j+7k and b = 2i+5j+4k.

We use the previous result with a1 = 4, a2 = 3, a3 = 7 and b1 = 2, b2 = 5, b3 = 4. Substitution
into the formula gives

a × b = ((3)(4) − (7)(5))i + ((7)(2) − (4)(4))j + ((4)(5) − (3)(2))k

which simplifies to

a × b = −23i − 2j + 14k
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For those familiar with evaluation of determinants there is a convenient way of remembering
and representing this formula which is given in the following Key Point and which is explained in
the accompanying video and in the Example below.

Key Point

If a = a1i + a2j + a3k and b = b1i + b2j + b3k then

a × b =

∣

∣

∣

∣

∣

∣

i j k

a1 a2 a3

b1 b2 b3

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

a2 a3

b2 b3

∣

∣

∣

∣

i −
∣

∣

∣

∣

a1 a3

b1 b3

∣

∣

∣

∣

j +

∣

∣

∣

∣

a1 a2

b1 b2

∣

∣

∣

∣

k

= (a2 × b3 − a3 × b2)i − (a1 × b3 − a3 × b1)j + (a1 × b2 − a2 × b1)

Example

Suppose we wish to find the vector product of the two vectors a = 4i+3j+7k and b = 2i+5j+4k.

We write down a determinant, which is an array of numbers: in the first row we write the three
unit vectors i, j and k. In the second and third rows we write the three components of a and b

respectively:

a× b =

∣

∣

∣

∣

∣

∣

i j k

4 3 7
2 5 4

∣

∣

∣

∣

∣

∣

We then consider the first element in the first row, i. Imagine covering up the elements in its

row and column, to give the array

∣

∣

∣

∣

3 7
5 4

∣

∣

∣

∣

. This is a so-called 2×2 determinant and is evaluated

by finding the product of the elements on the leading diagonal (top left to bottom right) and
subtracting the product of the elements on the other diagonal (3 × 4 − 7 × 5 = −23). The
resulting number gives the i component of the final answer.

We then consider the second element in the first row, j. Imagine covering up the elements in

its row and column, to give the array

∣

∣

∣

∣

4 7
2 4

∣

∣

∣

∣

. This 2 × 2 determinant is evaluated, as before,

by finding the product of the elements on the leading diagonal (top left to bottom right) and
subtracting the product of the elements on the other diagonal, (4× 4 − 7× 2 = 2). The result
is then multiplied by −1 and this gives the j component of the final answer, that is −2.

Finally, we consider the third element in the first row, k. Imagine covering up the elements in its

row and column, to give the array

∣

∣

∣

∣

4 3
2 5

∣

∣

∣

∣

. This determinant is evaluated, as before, by finding
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the product of the elements on the leading diagonal (top left to bottom right) and subtracting
the product of the elements on the other diagonal (4× 5 − 3× 2 = 14). The resulting number
gives the k component of the final answer.

We write all this as follows:

a× b =

∣

∣

∣

∣

∣

∣

i j k

4 3 7
2 5 4

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

3 7
5 4

∣

∣

∣

∣

i −
∣

∣

∣

∣

4 7
2 4

∣

∣

∣

∣

j +

∣

∣

∣

∣

4 3
2 5

∣

∣

∣

∣

k

= (3 × 4 − 7 × 5)i − (4 × 4 − 7 × 2)j + (4 × 5 − 3 × 2)k

= −23i − 2j + 14k

Exercises 1

1. Use the formula a × b = (a2b3 − a3b2)i + (a3b1 − a1b3)j + (a1b2 − a2b1)k to find the vector
product a× b in each of the following cases.

(a) a = 2i + 3j, b = −2i + 9j.

(b) a = 4i − 2j, b = 5i − 7j.

Comment upon your solutions.

2. Use the formula in Q1 to find the vector product a× b in each of the following cases.

(a) a = 5i + 3j + 4k, b = 2i − 8j + 9k.

(b) a = i + j− 12k, b = 2i + j + k.

3. Use determinants to find the vector product p× q in each of the following cases.

(a) p = i + 4j + 9k, q = 2i − k.

(b) p = 3i + j + k, q = i − 2j− 3k.

4. For the vectors p = i + j + k, q = −i − j− k show that, in this special case, p× q = q× p.

5. For the vectors a = i + 2j + 3k, b = 2i + 3j + k, c = 7i + 2j + k, show that

a × (b + c) = (a× b) + (a × c)

5. Some applications of the vector product

In this section we will look at some ways in which the vector product can be used.

Using the vector product to find a vector perpendicular to two given vectors.

One of the common applications of the vector product is to finding a vector which is perpendicular
to two given vectors. The two vectors should be non-zero and must not be parallel.

Example

Suppose we wish to find a vector which is perpendicular to both of the vectors a = i + 3j − 2k
and b = 5i − 3k.

We know from the definition of the vector product that the vector a × b will be perpendicular
to both a and b. So first of all we calculate a × b.
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a × b =

∣

∣

∣

∣

∣

∣

i j k

1 3 −2
5 0 −3

∣

∣

∣

∣

∣

∣

= (3 ×−3 − (−2) × 0)i − (1 ×−3 − (−2) × 5)j + (1 × 0 − 3 × 5)k

= −9i − 7j− 15k

This vector is perpendicular to a and b.
On occasions you may be asked to find a unit vector which is perpendicular to two given vectors.
To convert a vector into a unit vector in the same direction we must divide it by its modulus.
The modulus of −9i − 7j− 15k is

|a × b| =
√

(−9)2 + (−7)2 + (−15)2 =
√

355

So, finally, the required unit vector is
1√
355

(−9i − 7j− 15k).

Using the vector product to find the area of a parallelogram.

Consider the parallelogram shown in Figure 6 which has sides given by vectors b and c.

b

c
h

θ

Figure 6. A parallelogram with two sides given by b and c.

The area of the parallelogram is the length of the base multiplied by the perpendicular height, h.

Now sin θ =
h

|c| and so h = |c| sin θ. Therefore

area = |b| |c| sin θ

which is simply the modulus of the vector product of b and c. We deduce that the area of the
parallelogram is given by

area = |b× c|
Using the vector product to find the volume of a parallelepiped.

Consider Figure 7 which illustrates a parallelepiped. This is a six sided solid, the sides of which
are parallelograms. Opposite parallelograms are identical. The volume, V , of a parallelepiped
with edges a, b and c is given by

V = |a · (b × c)|
This formula can be obtained by understanding that the volume is the product of the area of the
base and the perpendicular height. Because the base is a parallelogram its area is |b × c|. The
perpendicular height is the component of a in the direction perpendicular to the plane containing

b and a, and this is h = a · b̂× c. So the volume is given by

V = (height)( area of base)

= a · b̂ × c |b× c|

= a · b× c

|b× c| |b× c|

= a · (b× c)
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This could turn out to be negative, so in fact, for the volume we take its modulus: V = |a·(b×c)|.

a

b

c
h

Figure 7. A parallelepiped with edges given by a, b and c.

Example

Suppose we wish to find the volume of the parallelepiped with edges a = 3i+2j+k, b = 2i+j+k

and c = i + 2j + 4k.

We first evaluate the vector product b× c.

b × c =

∣

∣

∣

∣

∣

∣

i j k

2 1 1
1 2 4

∣

∣

∣

∣

∣

∣

= (1 × 4 − 1 × 2)i − (2 × 4 − 1 × 1)j + (2 × 2 − 1 × 1)k

= 2i − 7j + 3k

Then we need to find the scalar product of a with b × c.

a · (b × c) = (3i + 2j + k) · (2i − 7j + 3k) = 6 − 14 + 3 = −5

Finally, we want the modulus, or absolute value, of this result. We conclude the parallelepiped
has volume 5 (units cubed).

Exercises 2.

1. Find a unit vector which is perpendicular to both a = i + 2j− 3k and b = 2i + 3j + k.

2. Find the area of the parallelogram with edges represented by the vectors 2i − j + 3k and
7i + j + k.

3. Find the volume of the parallelepiped with edges represented by the vectors i+j+k, 2i+3j+4k
and 3i − 2j + k.

4. Calculate the triple scalar product (a × b) · c when a = 2i − 2j + k, b = 2i + j and
c = 3i + 2j + k.

Answers to Exercises

Exercises 1.

1. (a) 24k, (b) −18k. Both answers are vectors in the z direction. The given vectors, a and b,
lie in the xy plane.

2. (a) 59i − 37j− 46k, (b) 13i − 25j− k.

3. (a) −4i + 19j− 8k, (b) −i + 10j− 7k.
4. Both cross products equal zero, and so, in this special case p × q = q × p. The two given
vectors are anti-parallel.

5. Both equal −11i + 25j− 13k.
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Exercises 2.

1. 1√
171

(11i − 7j− k).

2.
√

458 square units.
3. 8 units cubed.
4. 7.
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