
BLOSSOMS Fractals Lesson Complex numbers

In the upcoming fractals lesson, we’ll look at some mathematical ways to generate very interesting sets. In order to

do this, we’ll need to be able to work with the set ofcomplex numbers, C, which are an extension of the real numbers,

R (those that can be written in decimal notation).1

This tutorial contains five exercisesfor you to practice with, and we’ve left enough space for you to work the

problems right on these sheets. For clarity, sometimes use the× symbol to indicate multiplication (e.g.x× y), and

sometimes we’ll just write the two numbers next to each other(e.g.,xy); these two operations are the same.

1 Why Complex Numbers

Why do we need new numbers?

The hardest thing about working with complex numbers is understanding why you might want to. Before intro-

ducing complex numbers, let’s back up and look at simpler examples of the need to deal with new numbers.

If you are like most people, initially number meant whole number, 0,1,2,3, .... Whole numbers make sense. They

provide a way to answer questions of the form “How many ... ?” You also learned about the operations of addition and

subtraction, and you found that while subtraction is a perfectly good operation, some subtraction problems, like 3−5,

don’t have answers if we only work with whole numbers. Then you find that if you are willing to work with integers,

...,−2,−1,0,1,2, ..., then all subtraction problems do have answers! Furthermore, by considering examples such as

temperature scales, you see that negative numbers often make sense.

Now that we have “fixed” subtraction, we will deal with division. Some, in fact most, division problems do not

have answers that are integers. For example, 3÷2 is not an integer. We need new numbers! Now we have rational

numbers (fractions).

There is more to this story. There are problems with square roots and other operations, but we will not get into that

here. The point is that you have had to expand your idea of number on several occasions, and now we are going to do

that again.

The “problem” that leads to complex numbers concerns solutions of equations.

• Equation 1:x2−1 = 0. Equation 1 has two solutions,x = −1 andx = 1. We know that solving an equation inx

is equivalent to finding thex-intercepts of a graph; and, the graph ofy = x2−1 crosses thex-axis at(−1,0) and

(1,0).

1Sections 1-4 are adapted with permission from Jeff Brown’s course notes for Math 111 at University of North Carolina Wilmington, and can
be found athttp://www.uncwil.edu/courses/mat111hb/Izs/complex/complex.html.
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BLOSSOMS Fractals Lesson Complex numbers

• Equation 2:x2 +1 = 0. By the same logic, Equation 2 has no solutions; we can see this by looking at the graph

of y = x2 +1.
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Since the graph has nox-intercepts, the equation has no solutions. When we define complex numbers, Equation 2

will have two solutions.

2 The Number i

Consider Equations 1 and 2 again.

Equation 1 Equation 2

x2−1 = 0 x2 +1 = 0

x2 = 1 x2 = −1

Equation 1 has solutions because the number 1 has two square roots, 1 and−1. Equation 2 has no solutions

because−1 does not have a square root. In other words, there is no number such that if we multiply it by itself we get

−1. If Equation 2 is to be given solutions, then we must create asquare root of−1.

Definition: The imaginary uniti is defined by

i =
√
−1.

The definition ofi tells us thati2 = −1. We can use this fact to find other powers ofi.

Example 1.

i3 = i2× i = −1× i = −i, i4 = i2× i2 = (−1)× (−1) = 1

Exercise 1: Simplify i8 andi11.

i8 =

i11 =

2
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We treati like other numbers in that we can multiply it by numbers, we can add it to other numbers, etc. The

difference is that many of these quantities cannot be simplified to a pure real number.

For example, 3i just means 3 timesi, but we cannot rewrite this product in a simpler form, because it is not a real

number. The quantity 5+3i also cannot be simplified to a real number.

However,(−i)2 can be simplified.

(−i)2 = (−1× i)2 = (−1)2× i2 = 1× (−1) = −1.

Becausei2 and(−i)2 are both equal to−1, they are both solutions for Equation 2 above.

3 The Complex Plane

Definition: A complex number is one of the forma + bi, wherea andb are real numbers.a is called the real part of

the complex number, andb is called the imaginary part.

Two complex numbers are equal if and only if their real parts are equal and their imaginary parts are equal, i.e.,

a+bi = c+di if and only if a = c andb = d.

Example 2. Here are some complex numbers:

2−5i, 6+4i, 0+2i = 2i, 4+0i = 4.

The last example above illustrates the fact that every real number is a complex number (with imaginary part 0).

It is often useful to think of real numbers as points on a number line. For example, you can define the order relation

c < d, wherec andd are real numbers, by saying that it meansc is to the left ofd on the number line.

We can visualize complex numbers by associating them with points in the two-dimensional plane, which we call

the complex planeC. We do this by letting the numbera+bi correspond to the point(a,b), wherea is the coordinate

of the complex number along thereal axis (which we usually call thex-axis) andb is the coordinate of the complex

number along theimaginary axis (which we usually call they-axis).

4 Complex Arithmetic

When a number system is extended, the arithmetic operations must be defined for the new numbers and the important

properties of the operations should still hold for the old numbers. For example, addition of whole numbers is com-

mutative. This means that we can change the order in which twowhole numbers are added and the sum is the same:

3+5 = 8 and 5+3 = 8.

We need to define the four arithmetic operations on complex numbers.
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4.1 Addition and Subtraction

To add or subtract two complex numbers, you add or subtract the real parts and the imaginary parts.

(a+bi)+(c+di) = (a+ c)+(b+d)i

(a+bi)− (c+di) = (a− c)+(b−d)i

Example 3.

(3−5i)+(6+7i) = (3+6)+(−5+7)i = 9+2i

(3−5i)− (6+7i) = (3−6)+(−5−7)i = −3−12i

Note: These operations are the same as combining similar terms in expressions that have a variable. For example,

if we were to simplify the expression(3−5x)+(6+7x) by combining similar terms, then the constants 3 and 6 would

be combined, and the terms−5x and 7x would be combined to yield 9+2x.

4.2 Multiplication

The formula for multiplying two complex numbers is

(a+bi)∗ (c+di) = (ac−bd)+(ad +bc)i.

You do not have to memorize this formula, because you can arrive at the same result by treating the complex

numbers like expressions with a variable, multiply them as usual, then simplify. The only difference is that powers of

i do simplify, while powers ofx do not.

Example 4.

(2+3i)(4+7i) = 2×4+2×7i+4×3i+3×7× i2

= 8+14i+12i+21× (−1)

= (8−21)+(14+12)i

= −13+26i

Notice that in the second line of the example, thei2 has been replaced by−1.

Using the formula for multiplication, we would have gone directly to the third line.
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Exercise 2: Perform the following operations.

(a) (−3+4i)+(2−5i) =

(b) 3i− (2−4i) =

(c) (2−7i)(3+4i) =

(d) (1+ i)(2−3i) =

5 Absolute value

Just as the absolute value of a real number measures the distance of that number from zero along the real number

line, the absolute value of acomplex number measures the distance of that number from zero in thecomplex plane.

Remember that in the complex plane, the complex numberz = a+bi corresponds to the point(a,b).

z = a+bi

a

b

Re

Im

|z|2 = a2+b2

How will we find the distance of the complex number

z = a+bi from the origin? Observe that the length of the

line from the origin toz is simply the hypoteneuse of

a right triangle, with one side of lengtha and the other

side of lengthb. It’s simple, then, to use the Pythagorean

theorem to find the length of the hypoteneuse, which is

|z|:

|z|2 = a2 +b2

|z| =
√

a2 +b2

5.1 The unit circle

Re

Im

1

−i

i

−1

|z| = 1

Some complex numbers have absolute value 1. Of course, 1 is the

absolute value of both 1 and -1, but it’s also the absolute value of both

i and−i since they’re both one unit away from 0 on the imaginary

axis. The unit circle is the circle of radius 1 centered at 0. It includes

all complex numbers of absolute value 1, so it has the equation |z| =

1.
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6 Some more practice!

Exercise 3:

(a) On the axes below, draw and label the following three points in the complex plane:z = 1
2i,1− i,−1.

Re

Im

1

−i

i

−1

(b) Calculate|z| for each of the three points in (a).
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Exercise 4: Every complex numberz = x+ yi has acomplex conjugate, the complex numberz = x− yi.

(a) What is|z|? What is|z|?

(b) Computez× z. Is your answer real, imaginary or complex?

(c) How are|z| andz× z related?

Exercise 5: If z = x + yi, for what values ofx and y is |z2| greater than|z|? How do you interpret your answer

geometrically, in the complex plane?
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C. Complex Numbers

1. Complex arithmetic.

Most people think that complex numbers arose from attempts to solve quadratic equa-
tions, but actually it was in connection with cubic equations they first appeared. Everyone
knew that certain quadratic equations, like

x2 + 1 = 0, or x2 + 2x+ 5 = 0,

had no solutions. The problem was with certain cubic equations, for example

x3 − 6x+ 2 = 0.

This equation was known to have three real roots, given by simple combinations of the
expressions

(1) A = 3

√

−1 +
√
−7, B = 3

√

−1−
√
−7;

one of the roots for instance is A+B: it may not look like a real number, but it turns out
to be one.

What was to be made of the expressions A and B? They were viewed as some sort
of “imaginary numbers” which had no meaning in themselves, but which were useful as
intermediate steps in calculations that would ultimately lead to the real numbers you were
looking for (such as A+B).

This point of view persisted for several hundred years. But as more and more applications
for these “imaginary numbers” were found, they gradually began to be accepted as valid
“numbers” in their own right, even though they did not measure the length of any line
segment. Nowadays we are fairly generous in the use of the word “number”: numbers of one
sort or another don’t have to measure anything, but to merit the name they must belong to a
system in which some type of addition, subtraction, multiplication, and division is possible,
and where these operations obey those laws of arithmetic one learns in elementary school
and has usually forgotten by high school — the commutative, associative, and distributive
laws.

To describe the complex numbers, we use a formal symbol i representing
√
−1; then a

complex number is an expression of the form

(2) a+ bi, a, b real numbers.

If a = 0 or b = 0, they are omitted (unless both are 0); thus we write

a+ 0i = a, 0 + bi = bi, 0 + 0i = 0 .

The definition of equality between two complex numbers is

(3) a+ bi = c+ di ⇔ a = c, b = d .

This shows that the numbers a and b are uniquely determined once the complex number
a+ bi is given; we call them respectively the real and imaginary parts of a+ bi. (It would be
more logical to call bi the imaginary part, but this would be less convenient.) In symbols,

(4) a = Re (a+ bi), b = Im (a+ bi)
1



2 18.03 NOTES

Addition and multiplication of complex numbers are defined in the familiar way, making
use of the fact that i2 = −1 :

Addition (a+ bi) + (c+ di) = (a+ c) + (b+ d)i(5a)

Multiplication (a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i(5b)

Division is a little more complicated; what is important is not so much the final formula
but rather the procedure which produces it; assuming c+ di 6= 0, it is:

(5c) Division
a+ bi

c+ di
=

a+ bi

c+ di
· c− di

c− di
=

ac+ bd

c2 + d2
+

bc− ad

c2 + d2
i

This division procedure made use of complex conjugation: if z = a + bi, we define the
complex conjugate of z to be the complex number

(6) z̄ = a− bi (note that zz̄ = a2 + b2 ).

The size of a complex number is measured by its absolute value, or modulus, defined by

(7) |z| = |a+ bi| =
√

a2 + b2; (thus : zz̄ = |z|2 ).

Remarks. For the sake of computers, which do not understand what a “formal expression”
is, one can define a complex number to be just an ordered pair (a, b) of real numbers, and
define the arithmetic operations accordingly; using (5b), multiplication is defined by

(a, b)(c, d) = (ac− bd, ad+ bc) .

Then if we let i represent the ordered pair (0, 1), and a the ordered pair (a, 0), it is easy
to verify using the above definition of multiplication that

i2 = (0, 1)(0, 1) = (−1, 0) = −1 and (a, b) = (a, 0) + (b, 0)(0, 1) = a+ bi ,

and we recover the human way of writing complex numbers.

Since it is easily verified from the definition that multiplication of complex numbers is
commutative: z1z2 = z2z1, it does not matter whether the i comes before or after, i.e.,
whether we write z = x + yi or z = x + iy. The former is used when x and y are simple
numbers because it looks better; the latter is more usual when x and y represent functions
(or values of functions), to make the i stand out clearly or to avoid having to use parentheses:

2 + 3i, 5− 2πi; cos π
2 + i sin π

2 , x(t) + i y(t) .

2. Polar representation.

Complex numbers are represented geometrically by points in the plane: the number a+ib
is represented by the point (a, b) in Cartesian coordinates. When the points of the plane
represent complex numbers in this way, the plane is called the complex plane.

By switching to polar coordinates, we can write any non-zero complex number in an
alternative form. Letting as usual

x = r cos θ, y = r sin θ,

we get the polar form for a non-zero complex number: assuming x+ iy 6= 0,

(8) x+ iy = r(cos θ + i sin θ) .

When the complex number is written in polar form, we see from (7) that

r = |x+ iy|. (absolute value, modulus)
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We call θ the polar angle or the argument of x+ iy. In symbols, one sometimes sees

θ = arg (x+ iy) (polar angle, argument) .

The absolute value is uniquely determined by x+ iy, but the polar angle is not, since it can
be increased by any integer multiple of 2π. (The complex number 0 has no polar angle.) To
make θ unique, one can specify

0 ≤ θ < 2π principal value of the polar angle.

This so-called principal value of the angle is sometimes indicated by writing Arg (x+ iy).
For example,

Arg (−1) = π, arg (−1) = ±π,±3π,±5π, . . . .

Changing between Cartesian and polar representation of a complex number is essentially the
same as changing between Cartesian and polar coordinates: the same equations are used.

Example 1. Give the polar form for: −i, 1 + i, 1− i, −1 + i
√
3 .

Solution.

−i = i sin 3π
2 1 + i =

√
2 (cos π

4 + i sin π
4 )

−1 + i
√
3 = 2 (cos 2π

3 + i sin 2π
3 ) 1− i =

√
2 (cos −π

4 + i sin −π
4 )

The abbreviation cis θ is sometimes used for cos θ+ i sin θ; for students of science and
engineering, however, it is important to get used to the exponential form for this expression:

(9) eiθ = cos θ + i sin θ Euler’s formula.

Equation (9) should be regarded as the definition of the exponential of an imaginary power.
A good justification for it however is found in the infinite series

et = 1 +
t

1!
+

t2

2!
+

t3

3!
+ . . . .

If we substitute iθ for t in the series, and collect the real and imaginary parts of the sum
(remembering that

i2 = −1, i3 = −i, i4 = 1, i5 = i, . . . ,

and so on, we get

eiθ =

(

1− θ2

2!
+

θ4

4!
− . . .

)

+ i

(

θ − θ3

3!
+

θ5

5!
− . . .

)

= cos θ + i sin θ ,

in view of the infinite series representations for cos θ and sin θ.

Since we only know that the series expansion for et is valid when t is a real
number, the above argument is only suggestive — it is not a proof of (9). What it
shows is that Euler’s formula (9) is formally compatible with the series expansions
for the exponential, sine, and cosine functions.

Using the complex exponential, the polar representation (8) is written

(10) x+ iy = r eiθ

The most important reason for polar representation is that multiplication and division
of complex numbers is particularly simple when they are written in polar form. Indeed, by
using Euler’s formula (9) and the trigonometric addition formulas, it is not hard to show
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(11) eiθeiθ
′

= ei(θ+θ′) .

This gives another justification for the definition (9) — it makes the complex exponential
follow the same exponential addition law as the real exponential. The law (11) leads to the
simple rules for multiplying and dividing complex numbers written in polar form:

(12a) multiplication rule r eiθ · r′eiθ′

= r r′ ei(θ+θ′) ;

to multiply two complex numbers, you multiply the absolute values and add the angles.

(12b) reciprocal rule
1

r eiθ
=

1

r
e−iθ;

(12c) division rule
r eiθ

r′eiθ′
=

r

r′
ei (θ−θ′);

to divide by a complex number, divide by its absolute value and subtract its angle.

The reciprocal rule (12b) follows from (12a), which shows that
1

r
e−iθ · reiθ = 1.

The division rule follows by writing
r eiθ

r′eiθ′
=

1

r′eiθ′
· r eiθ and using (12b) and then (12a).

Using (12a), we can raise x+ iy to a positive integer power by first using x+ iy = r eiθ;
the special case when r = 1 is called DeMoivre’s formula:

(13) (x+iy)n = rneinθ; DeMoivre’s formula: (cos θ+i sin θ)n = cosnθ+i sinnθ.

Example 2. Express a) (1 + i)6 in Cartesian form; b)
1 + i

√
3√

3 + i
in polar form.

Solution. a) Change to polar form, use (13), then change back to Cartesian form:

(1 + i)6 = (
√
2 eiπ/4)6 = (

√
2)6ei 6π/4 = 8 ei 3π/2 = −8i .

b) Changing to polar form,
1 + i

√
3√

3 + i
=

2eiπ/3

2eiπ/6
= eiπ/6 , using the division rule (12c).

You can check the answer to (a) by applying the binomial theorem to (1+ i)6 and collecting
the real and imaginary parts; to (b) by doing the division in Cartesian form (5c), then
converting the answer to polar form.

3. Complex exponentials

Because of the importance of complex exponentials in differential equations, and in science
and engineering generally, we go a little further with them.

Euler’s formula (9) defines the exponential to a pure imaginary power. The definition of
an exponential to an arbitrary complex power is:

(14) ea+ib = eaeib = ea(cos b+ i sin b).

We stress that the equation (14) is a definition, not a self-evident truth, since up to now no
meaning has been assigned to the left-hand side. From (14) we see that

(15) Re (ea+ib) = ea cos b, Im (ea+ib) = ea sin b .
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The complex exponential obeys the usual law of exponents:

(16) ez+z′

= ezez
′

,

as is easily seen by combining (14) and (11).

The complex exponential is expressed in terms of the sine and cosine by Euler’s formula
(9). Conversely, the sin and cos functions can be expressed in terms of complex exponentials.
There are two important ways of doing this, both of which you should learn:

cosx = Re (eix), sinx = Im (eix) ;(17)

cosx = 1
2 (e

ix + e−ix), sinx = 1
2i (e

ix − e−ix) .(18)

The equations in (18) follow easily from Euler’s formula (9); their derivation is left for the
exercises. Here are some examples of their use.

Example 3. Express cos3 x in terms of the functions cosnx, for suitable n.

Solution. We use (18) and the binomial theorem, then (18) again:

cos3 x = 1
8 (e

ix + e−ix)3

= 1
8 (e

3ix + 3eix + 3e−ix + e−3ix)

= 1
4 cos 3x+ 3

4 cosx . �

As a preliminary to the next example, we note that a function like

eix = cosx+ i sinx

is a complex-valued function of the real variable x. Such a function may be written as

u(x) + i v(x), u, v real-valued

and its derivative and integral with respect to x are defined to be

(19a,b) a) D(u+ iv) = Du+ iDv, b)

∫

(u+ iv) dx =

∫

u dx+ i

∫

v dx .

From this it follows by a calculation that

(20) D(e(a+ib)x = (a+ ib)e(a+ib)x, and therefore

∫

e(a+ib)xdx =
1

a+ ib
e(a+ib)x .

Example 4. Calculate

∫

ex cos 2x dx by using complex exponentials.

Solution. The usual method is a tricky use of two successive integration by parts. Using
complex exponentials instead, the calculation is straightforward. We have

ex cos 2x = Re
(

e(1+2i)x
)

, by (14) or (15); therefore
∫

ex cos 2x dx = Re

(
∫

e(1+2i)x dx

)

, by (19b).

Calculating the integral,
∫

e(1+2i)x dx =
1

1 + 2i
e(1+2i)x by (20);

=

(

1

5
− 2

5
i

)

(

ex cos 2x+ i ex sin 2x
)

,

using (14) and complex division (5c). According to the second line above, we want the real
part of this last expression. Multiply using (5b) and take the real part; you get

1
5e

x cos 2x+ 2
5e

x sin 2x. �
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In this differential equations course, we will make free use of complex exponentials in
solving differential equations, and in doing formal calculations like the ones above. This is
standard practice in science and engineering, and you need to get used to it.

4. Finding n-th roots.

To solve linear differential equations with constant coefficients, you need to be able find
the real and complex roots of polynomial equations. Though a lot of this is done today with
calculators and computers, one still has to know how to do an important special case by
hand: finding the roots of

zn = α,

where α is a complex number, i.e., finding the n-th roots of α. Polar representation will be
a big help in this.

Let’s begin with a special case: the n-th roots of unity: the solutions to

zn = 1 .

To solve this equation, we use polar representation for both sides, setting z = reiθ on the
left, and using all possible polar angles on the right; using the exponential law to multiply,
the above equation then becomes

rneinθ = 1 · e(2kπi), k = 0,±1,±2, . . . .

Equating the absolute values and the polar angles of the two sides gives

rn = 1, nθ = 2kπ , k = 0,±1,±2, . . . ,

from which we conclude that

(∗) r = 1, θ =
2kπ

n
, k = 0, 1, . . . , n− 1 .

In the above, we get only the value r = 1, since r must be real and non-negative. We don’t
need any integer values of k other than 0, . . . , n−1 since they would not produce a complex
number different from the above n numbers. That is, if we add an, an integer multiple of
n, to k, we get the same complex number:

θ′ =
2(k + an)π

n
= θ + 2aπ; and eiθ

′

= eiθ, since e2aπi = (e2πi)a = 1.

We conclude from (∗) therefore that

(21) the n-th roots of 1 are the numbers e2kπi/n, k = 0, . . . , n− 1.

This shows there are n complex n-th roots of unity. They all lie
on the unit circle in the complex plane, since they have absolute
value 1; they are evenly spaced around the unit circle, starting with
1; the angle between two consecutive ones is 2π/n. These facts
are illustrated on the right for the case n = 6.

ππ

π π

i

i i

33

3 3

1

e

e

i2

54 e

e

1
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From (21), we get another notation for the roots of unity (ζ is the Greek letter “zeta”):

(22) the n-th roots of 1 are 1, ζ, ζ2, . . . , ζn−1, where ζ = e2πi/n.

We now generalize the above to find the n-th roots of an arbitrary complex number w.
We begin by writing w in polar form:

w = r eiθ ; θ = Arg w, 0 ≤ θ < 2π,

i.e., θ is the principal value of the polar angle of w. Then the same reasoning as we used
above shows that if z is an n-th root of w, then

(23) zn = w = r eiθ, so z = n
√
r ei(θ+2kπ)/n, k = 0, 1, . . . , n− 1.

Comparing this with (22), we see that these n roots can be written in the suggestive form

(24) n
√
w = z0, z0ζ, z0ζ

2, . . . , z0ζ
n−1, where z0 = n

√
r eiθ/n .

As a check, we see that all of the n complex numbers in (24) satisfy zn = w :

(z0ζ
i)n = zn0 ζ

ni = zn0 · 1i, since ζn = 1, by (22);

= w, by the definition (24) of z0 and (23).

Example 5. Find in Cartesian form all values of a) 3
√
1 b) 4

√
i .

Solution. a) According to (22), the cube roots of 1 are 1, ω, and ω2, where

ω = e2πi/3 = cos
2π

3
+ i sin

2π

3
= −1

2
+ i

√
3

2

ω2 = e−2πi/3 = cos
−2π

3
+ i sin

−2π

3
= −1

2
− i

√
3

2
.

The greek letter ω (“omega”) is traditionally used for this cube root. Note that
for the polar angle of ω2 we used −2π/3 rather than the equivalent angle 4π/3,
in order to take advantage of the identities

cos(−x) = cosx, sin(−x) = − sinx .

Note that ω2 = ω̄. Another way to do this problem would be to draw the position
of ω2 and ω on the unit circle, and use geometry to figure out their coordinates.

b) To find 4
√
i, we can use (24). We know that 4

√
1 = 1, i,−1,−i (either by drawing

the unit circle picture, or by using (22)). Therefore by (24), we get

4
√
i = z0, z0i, −z0, −z0i, where z0 = eπi/8 = cos

π

8
+ i sin

π

8
;

= a+ ib, −b+ ia, −a− ib, b− ia, where z0 = a+ ib = cos
π

8
+ i sin

π

8
.



8 18.03 NOTES

Example 6. Solve the equation x6 − 2x3 + 2 = 0.

Solution. Treating this as a quadratic equation in x3, we solve the quadratic by using
the quadratic formula, the two roots are 1 + i and 1 − i (check this!), so the roots of the
original equation satisfy either

x3 = 1 + i, or x3 = 1− i .

This reduces the problem to finding the cube roots of the two complex numbers 1 ± i.
We begin by writing them in polar form:

1 + i =
√
2 eπi/4, 1− i =

√
2 e−πi/4 .

(Once again, note the use of the negative polar angle for 1− i, which is more convenient for
calculations.) The three cube roots of the first of these are (by (23)),

6
√
2 eπi/12 = 6

√
2

(

cos
π

12
+ i sin

π

12

)

6
√
2 e3πi/4 = 6

√
2

(

cos
3π

4
+ i sin

3π

4

)

, since
π

12
+

2π

3
=

3π

4
;

6
√
2 e−7πi/12 = 6

√
2

(

cos
7π

12
− i sin

7π

12

)

, since
π

12
− 2π

3
= −7π

12
.

The second cube root can also be written as 6
√
2

(−1 + i√
2

)

=
−1 + i
3
√
2

.

This gives three of the cube roots. The other three are the cube roots of 1 − i, which
may be found by replacing i by −i everywhere above (i.e., taking the complex conjugate).

The cube roots can also according to (24) be described as

z1, z1ω, z1ω
2 and z2, z2ω, z2ω

2, where z1 = 6
√
2 eπi/12, z2 = 6

√
2 e−πi/12.

Exercises: Section 2E
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